美麗鄉(xiāng)村污水處理一體化系統(tǒng)
污水設(shè)備生產(chǎn)廠家:魯盛環(huán)保。
在我們公司可以采購:地埋式一體化污水處理設(shè)備、氣浮機、二氧化氯發(fā)生器、加藥裝置、斜管沉淀設(shè)備、玻璃鋼設(shè)備、疊螺污泥脫水機、機械格柵、壓濾機、一體化泵站等。
一站式采購、一站式服務(wù),歡迎咨詢。
生物膜的形成原理(掛膜過程)
生物膜的形成過程是微生物吸附、生長、脫落等綜合作用的動態(tài)過程。
首先,懸浮于液相中的有機污染物及微生物移動并附著在載體表面上;然后,附著在載體上的微生物對有機污染物進(jìn)行降解,并發(fā)生代謝、生長、繁殖等過程,并逐漸在載體的局部區(qū)域形成薄的生物膜,這層生物膜具有生化活性,又可進(jìn)一步吸附、分解廢水中有機污染物,直至后形成一層將載體*包裹的成熟的生物膜。
微生物膜的形成通常經(jīng)歷載體表面改良、可逆附著、不可逆附著、生物膜形成四個階段,具體描述如下:
微生物在載體上的掛膜可分為微生物吸附和固著生長兩個階段。載體加入水體以后,首先進(jìn)入吸附期。有部分微生物和絲狀物質(zhì)已經(jīng)附著在載體表面,附著了較多物質(zhì)的位置往往是載體的凹處,不容易被水流剪切的地方。此時懸浮液中的微生物大量增長,出現(xiàn)較明顯的一個污泥層。
經(jīng)過不可逆附著以后,微生物在載體表面獲得一個比較穩(wěn)定的生長環(huán)境,在供氧和底物充足的情況下,吸附在載體上的污泥中的微生物很快就開始生長。
隨著培養(yǎng)馴化時間的增長,在載體表面生長的生物膜也迅速增長,逐漸覆蓋整個載體表面,并開始增厚。但生物膜的生長并不均勻,在載體比較突出的地方,生物膜比較薄,而凹處則會長出相當(dāng)繁盛的菌落,可見水力剪切對生物膜的生長具有重要的影響。在載體表面附著生長的微生物種類也很繁多,除了累枝蟲、鐘蟲外,還可觀察到絲狀菌、球菌、桿菌等,還有一些游泳性的細(xì)菌在活動。隨著載體上附著了越來越多的生物膜,載體的表觀密度逐漸會下降,變得更輕,更容易流態(tài)化,同時在下降區(qū)的載體下降速度有所變慢。
生物膜形成的影響因素
生物膜的形成與載體表面性質(zhì)(載體表面親水性、表面電荷、表面化學(xué)組成和表面粗糙度)、微生物的性質(zhì)(微生物的種類、培養(yǎng)條件、活性和濃度)及環(huán)境因素(PH值、離子強度、水力剪切力、溫度、營養(yǎng)條件及微生物與載體的接觸時間)等因素有關(guān)。
載體表面性質(zhì)
載體表面電荷性、粗糙度、粒徑和載體濃度等直接影響著生物膜在其表面的附著、形成。在正常生長環(huán)境下,微生物表面帶有負(fù)電荷。如果能通過一定的改良技術(shù),如化學(xué)氧化、低溫等離子體處理等可使載體表面帶有正電荷,從而可使微生物在載體表面的附著、形成過程更易進(jìn)行。載體表面的粗糙度有利于細(xì)菌在其表面附著、固定。
一方面,與光滑表面相比,粗糙的載體表面增加了細(xì)菌與載體間的有效接觸面積;另一方面載體表面的粗糙部分,如孔洞、裂縫等對已附著的細(xì)菌起著屏蔽保護(hù)作用,使它們免受水力剪切力的沖刷。
研究認(rèn)為,相對于大粒徑載體而言,小粒徑載體之間的相互摩擦小,比表面積大,因而更容易生成生物膜。另外,載體濃度對反應(yīng)器內(nèi)生物膜的掛膜也很重要。Wagner在用氣提式反應(yīng)器處理難降解物廢水時發(fā)現(xiàn),在載體質(zhì)量濃度很低情況下,即使生物膜厚達(dá)295μm,還是不能達(dá)到穩(wěn)定的去除率。但是,在載體濃度為20-30g/L時,即使只有20%的載體上有75μn厚的生物膜,反應(yīng)器依然能達(dá)到穩(wěn)定的(98%)去除率,COD負(fù)荷zui高可達(dá)58kg/(m3·d)。
懸浮微生物濃度
在給定的系統(tǒng)中,懸浮微生物濃度反映了微生物與載體間的接觸頻度。一般來講,隨著懸浮微生物濃度的增加,微生物與載體間可能接觸的幾率也增加。許多研究結(jié)果表明,在微生物附著過程中存在著一個臨界的懸浮微生物濃度;隨著微生物濃度的增加,微生物借助濃度梯度的運送得到加強。
在臨界值以前,微生物從液相傳送、擴散到載體表面是控制步驟,一旦超過此臨界值,微生物在載體表面的附著、固定受到載體有效表面積的限制,不再依賴于懸浮微生物的濃度。但附著固定平衡后,載體表面微生物的量是由微生物及載體表面特性所決定的。
懸浮微生物的活性
微生物的活性通??捎梦⑸锏谋仍鲩L率(μ)來描述,即單位質(zhì)量微生物的增長繁殖速率。因此,在研究微生物活性對生物膜形成的初階段的影響時,關(guān)鍵是如何控制懸浮微生物的比增長率。研究結(jié)果表明,硝化細(xì)菌在載體表面的附著固定量及初始速率均正比于懸浮硝化細(xì)菌的活性。異養(yǎng)生物膜的形成時也得出同樣結(jié)果。
影響懸浮微生物活性的因素主要有如下幾種:
(1)當(dāng)懸浮微生物的生物活性較高時,其分泌胞外多聚物的能力較強。這種粘性的胞外多聚物在細(xì)菌與載體之間起到了生物粘合劑的作用,使得細(xì)菌易于在載體表面附著、固定;
(2)微生物所處的能量水平直接與它們的增長率相關(guān)。當(dāng)盧增加時,懸浮微生物的動能隨之增加。這些能量有助于克服在固定化過程中微生物載體表面間的能壘,使得細(xì)菌初始積累速率與懸浮細(xì)菌活性成正比;
(3)微生物的表面結(jié)構(gòu)隨著其活性的不同而相應(yīng)變化。Herben等人研究發(fā)現(xiàn),懸浮細(xì)菌活性對細(xì)菌在載體表面的附著固定過程有影響,而且,細(xì)菌表面的化學(xué)組成、官能團的量也隨細(xì)菌活性的變化有顯著變化。同時,Wastson等人的研究表明,細(xì)胞膜等隨懸浮細(xì)菌活性的變化而有顯著變化。細(xì)菌表面的這些變化將直接影響微生物在載體表面的附著、固定。因此,通常認(rèn)為,由懸浮微生物活性變化而引起的細(xì)菌表面生理狀態(tài)或分子組成的變化是有利于細(xì)菌在載體表面附著、固定的;
廢水生物處理法是通過微生物的代謝作用,使廢水中呈溶解、膠體以及微細(xì)懸浮狀態(tài)的有機污染物轉(zhuǎn)化為穩(wěn)定、無害的物質(zhì)的方法。根據(jù)作用微生物的不同,生物處理法又可分為好氧生物處理和厭氧生物處理兩種類型。
美麗鄉(xiāng)村污水處理一體化系統(tǒng)生物處理對水質(zhì)的要求
(1)溶解氧(DO)
好氧生物處理必須有充足的氧氣供應(yīng),處理構(gòu)筑物中的溶解氧必須滿足微生物的要求。
(2)pH值
(3)溫度
一般來講,對好氧處理,水溫在10~50℃之間,可取得相當(dāng)好的處理效果。對厭氧處理,當(dāng)污泥消化溫度位5~15℃時,稱為低溫消化,消化過程較長,一般需要3至4個月才能完成,當(dāng)污泥消化溫度加至30~40℃時,為中溫消化,消化過程較短,通常采用人工加熱。當(dāng)污泥消化溫度提高到50~55℃時,稱為高溫消化,消化過程很短,但提升溫度耗費的能源過高,一般生物處理常用中溫消化。
(4)養(yǎng)料
細(xì)菌的生長繁殖需要有各種養(yǎng)料。其中包括碳、氮、磷、硫以及微量的鉀、鎂、鈣、鐵等和維生素。生活污水具有以上全部養(yǎng)料,而工業(yè)廢水則可能缺乏某些養(yǎng)料,特別是氮和磷。因此,工業(yè)廢水在進(jìn)行生物處理時,需投加生活污水或氮、磷類化合物(即營養(yǎng)鹽)
(5)有毒物質(zhì)
多數(shù)重金屬如鋅、銅、鉑、鉻等離子,對細(xì)菌都具有毒性,某些非金屬物質(zhì),如酚、甲醛、qing化物、硫化物等也有毒性。有毒物質(zhì)能控制其他物質(zhì)的生物氧化作用,對大多數(shù)細(xì)菌的生產(chǎn)繁殖具有抑制作用,但他們本身卻能被某些微生物所分解氧化。
2.常用生物處理方法
目前國內(nèi)較成熟的被廣泛采用的生物處理方法主要為生物膜法、活性污泥法、厭氧生物處理法。
(1)生物膜法
生物膜法主要用于從污水中去除溶解性有機污染物,主要優(yōu)點是對水質(zhì)、水量變化的適應(yīng)性較強。生物膜法是一大類生物處理法的統(tǒng)稱,共同的特點是微生物附著在介質(zhì)“濾料”表面上,形成生物膜,污水同生物膜接觸后,污水得到凈化,所需氧氣一般來自大氣。污水如含有較多的懸浮固體,應(yīng)先用沉淀池去除大部分懸浮固體后再進(jìn)入生物膜法處理構(gòu)筑物,以免引起堵塞,并減輕其負(fù)荷。老化的生物膜不斷脫落下來,隨水流入二次沉淀池被沉淀去除。
(2)活性污泥法
活性污泥法能從污水中去除溶解的和膠體的可生物降解有機物以及能被活性污泥吸附的懸浮固體和其他一些物質(zhì)。無機鹽類(磷和氮的化合物)也能部分的被去除。既適用于大量的污水處理,也適用于小流量的污水處理,運行方式靈活,日常運行費用較低,但管理要求較高,活性污泥法本質(zhì)上與天然水體(江、湖)的自凈過程相似,二者都為好氧生物過程,只是它的凈化強度大,因而活性污泥是天然水體自凈作用的人工化和強化。
(3)厭氧生化法
隨著技術(shù)的發(fā)展,出現(xiàn)的不供氧(無氧)或厭氧的生物處理,用于污泥的消化、高濃度有機廢水和溫度較高的有機工業(yè)廢水的處理,有更為明顯的效果。菌種的厭氧反應(yīng)一般經(jīng)歷水解、酸化、乙酸化、甲烷化等四個階段。